277 research outputs found

    A combined regular-logarithmic perturbation method for signal-noise interaction in amplified optical systems

    Get PDF
    We present a novel perturbation method for the nonlinear Schrödinger equation (NLSE) that governs the propagation of light in optical fibers. We apply this method to study signal-noise interactions in amplified multispan fiber-optic systems. Being based on a combination of the regular perturbation (RP) and logarithmic perturbation, the method is especially suitable for modeling the simultaneous presence of nonlinear and dispersive effects. Even after linearization, it retains the contribution of the quadratic perturbation terms of the NLSE, thereby achieving higher accuracy than an RP with comparable complexity. We revise parametric gain and nonlinear phase-noise effects under the new theory.We finally consider several examples and evaluate the probability density function of the optical or postdetection signal and the bit-error rate of an NRZ–OOK system. All of the results are compared with other models and with multicanonical Monte Carlo simulations

    Solutions to the Optical Cascading Equations

    Full text link
    Group theoretical methods are used to study the equations describing \chi^{(2)}:\chi^{(2)} cascading. The equations are shown not to be integrable by inverse scattering techniques. On the other hand, these equations do share some of the nice properties of soliton equations. Large families of explicit analytical solutions are obtained in terms of elliptic functions. In special cases, these periodic solutions reduce to localized ones, i.e., solitary waves. All previously known explicit solutions are recovered, and many additional ones are obtainedComment: 21 page

    Coupled Nonlinear Schr\"{o}dinger equation and Toda equation (the Root of Integrability)

    Full text link
    We consider the relation between the discrete coupled nonlinear Schr\"{o}dinger equation and Toda equation. Introducing complex times we can show the intergability of the discrete coupled nonlinear Schr\"{o}dinger equation. In the same way we can show the integrability in coupled case of dark and bright equations. Using this method we obtain several integrable equations.Comment: 11 pages, LateX, to apper in J. Phys. Soc. Jpn. Vol. 66, No

    Theory of Pump Depletion and Spike Formation in Stimulated Raman Scattering

    Full text link
    By using the inverse spectral transform, the SRS equations are solved and the explicit output data is given for arbitrary laser pump and Stokes seed profiles injected on a vacuum of optical phonons. For long duration laser pulses, this solution is modified such as to take into account the damping rate of the optical phonon wave. This model is used to interprete the experiments of Druhl, Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular the creation of a spike of (anomalous) pump radiation. The related nonlinear Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike is not a soliton.Comment: LaTex file, includes two figures in LaTex format, 9 page

    Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation

    Full text link
    The parametrically driven Ginsburg-Landau equation has well-known stationary solutions -- the so-called Bloch and Neel, or Ising, walls. In this paper, we construct an explicit stationary solution describing a bound state of two walls. We also demonstrate that stationary complexes of more than two walls do not exist.Comment: 10 pages, 2 figures, to appear in Physical Review

    Mixed perturbative expansion: the validity of a model for the cascading

    Get PDF
    A new type of perturbative expansion is built in order to give a rigorous derivation and to clarify the range of validity of some commonly used model equations. This model describes the evolution of the modulation of two short and localized pulses, fundamental and second harmonic, propagating together in a bulk uniaxial crystal with non-vanishing second order susceptibility χ(2)\chi^(2) and interacting through the nonlinear effect known as ``cascading'' in nonlinear optics. The perturbative method mixes a multi-scale expansion with a power series expansion of the susceptibility, and must be carefully adapted to the physical situation. It allows the determination of the physical conditions under which the model is valid: the order of magnitude of the walk-off, phase-mismatch,and anisotropy must have determined values.Comment: arxiv version is already officia

    Instability of two interacting, quasi-monochromatic waves in shallow water

    Full text link
    We study the nonlinear interactions of waves with a doubled-peaked power spectrum in shallow water. The starting point is the prototypical equation for nonlinear uni-directional waves in shallow water, i.e. the Korteweg de Vries equation. Using a multiple-scale technique two defocusing coupled Nonlinear Schr\"odinger equations are derived. We show analytically that plane wave solutions of such a system can be unstable to small perturbations. This surprising result suggests the existence of a new energy exchange mechanism which could influence the behaviour of ocean waves in shallow water.Comment: 4 pages, 2 figure
    • …
    corecore